首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374068篇
  免费   34939篇
  国内免费   20073篇
电工技术   19638篇
技术理论   33篇
综合类   32262篇
化学工业   70051篇
金属工艺   23028篇
机械仪表   17927篇
建筑科学   34784篇
矿业工程   15794篇
能源动力   13584篇
轻工业   25829篇
水利工程   12295篇
石油天然气   17723篇
武器工业   4244篇
无线电   31880篇
一般工业技术   41487篇
冶金工业   17276篇
原子能技术   3742篇
自动化技术   47503篇
  2024年   625篇
  2023年   5444篇
  2022年   8071篇
  2021年   12848篇
  2020年   11598篇
  2019年   9575篇
  2018年   8882篇
  2017年   10950篇
  2016年   13099篇
  2015年   14017篇
  2014年   23068篇
  2013年   22205篇
  2012年   26071篇
  2011年   30883篇
  2010年   23265篇
  2009年   24896篇
  2008年   22045篇
  2007年   26068篇
  2006年   23550篇
  2005年   20076篇
  2004年   16740篇
  2003年   14550篇
  2002年   11861篇
  2001年   9126篇
  2000年   7833篇
  1999年   6196篇
  1998年   4472篇
  1997年   3724篇
  1996年   3271篇
  1995年   2832篇
  1994年   2497篇
  1993年   1835篇
  1992年   1447篇
  1991年   1076篇
  1990年   898篇
  1989年   784篇
  1988年   454篇
  1987年   353篇
  1986年   340篇
  1985年   291篇
  1984年   210篇
  1983年   177篇
  1982年   138篇
  1981年   136篇
  1980年   145篇
  1979年   87篇
  1978年   42篇
  1977年   45篇
  1976年   35篇
  1975年   36篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
92.
夏敏浩  赵万剑  王骏 《中州煤炭》2022,(7):189-194,200
为了提高配电网差异化节能降耗效果,解决现有潜力评估方法存在的应用性能差的问题,提出碳中和背景下配电网差异化节能降耗潜力优化评估方法。根据配电网的空间结构,构建相应的等值电路模型。在该模型下,从设备损耗和运行附加损耗2个方面计算配电网的损耗量。根据损耗量计算结果,确定配电网差异化碳中和节能降耗方式。从静态和动态2个角度设置潜力评估指标,通过指标数据处理、指标权重求解等步骤,得出配电网差异化节能降耗潜力的综合量化评估结果。将设计潜力评估方法应用到配电网的差异化节能降耗改造工作中,能够有效降低配电网的实际线损量、降低区域损耗费用,并具有较高的应用价值。  相似文献   
93.
文猛  张释如 《包装工程》2022,43(21):162-168
目的 为了解决目前三维数据隐藏算法不能兼顾无失真和盲提取的问题,提出一种新的完全无失真的三维网格模型数据隐藏盲算法。方法 首先使用混沌逻辑映射选择嵌入与提取模式,保证数据的安全性。然后利用面元素重排,完全不会造成三维模型失真的性质,通过不同嵌入模式规则对三角面元素进行重排,以嵌入秘密数据。接收端则可根据相应的提取模式规则提取秘密数据。结果 仿真结果与分析表明,该算法不会对三维模型造成任何失真,嵌入容量为每顶点2比特,且能抵抗仿射变换攻击、噪声攻击和平滑攻击等。结论 这种三维数据隐藏盲算法无失真,容量大、安全性高、鲁棒性强,适用于三维载体不容修改的情形,如军事、医学、秘密通信和版权保护等。  相似文献   
94.
With the proliferation of additive manufacturing and 3D printing technologies, a broader palette of material properties can be elicited from cellular solids, also known as metamaterials, architected foams, programmable materials, or lattice structures. Metamaterials are designed and optimized under the assumption of perfect geometry and a homogeneous underlying base material. Yet in practice real lattices contain thousands or even millions of complex features, each with imperfections in shape and material constituency. While the role of these defects on the mean properties of metamaterials has been well studied, little attention has been paid to the stochastic properties of metamaterials, a crucial next step for high reliability aerospace or biomedical applications. In this work we show that it is precisely the large quantity of features that serves to homogenize the heterogeneities of the individual features, thereby reducing the variability of the collective structure and achieving effective properties that can be even more consistent than the monolithic base material. In this first statistical study of additive lattice variability, a total of 239 strut-based lattices were mechanically tested for two pedagogical lattice topologies (body centered cubic and face centered cubic) at three different relative densities. The variability in yield strength and modulus was observed to exponentially decrease with feature count (to the power −0.5), a scaling trend that we show can be predicted using an analytic model or a finite element beam model. The latter provides an efficient pathway to extend the current concepts to arbitrary/complex geometries and loading scenarios. These results not only illustrate the homogenizing benefit of lattices, but also provide governing design principles that can be used to mitigate manufacturing inconsistencies via topological design.  相似文献   
95.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
96.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
97.
Through Density Functional Theory (DFT) simulations, we have explored the possibility of yttrium (Y) doped Triazine (Covalent Triazine Frameworks i.e., CTF-1) to be a promising material for reversible hydrogen storage. We have found that Y atom strongly bonded on Triazine surface can adsorb at the most 7H2 molecules with an average binding energy of ?0.33 eV/H2. This boosts the storage capacity of the system to 7.3 wt% which is well above the minimum requirement of 6.5 wt% for efficient storage of hydrogen as stipulated by the US Department of Energy (DoE). The structural integrity over and above the desorption temperature (420 K) has been entrenched through Molecular Dynamics simulations and the investigation of metal-metal clustering has been corroborated through diffusion energy barrier computation. The mechanism of interactions between Y and Triazine as well as between H2 molecules and Y doped Triazine has been explored via analyses of the partial density of states, charge density, and Bader charge. It has been perceived that the interplay of H2 molecules with Y on Triazine is Kubas-type of interaction. The above-mentioned analysis and outcomes make us highly optimistic that Y doped Triazine could be employed as reversible hydrogen storage material which can act as an environmentally friendly alternate fuel for transport applications.  相似文献   
98.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
99.
High energy consumption is considered to be one of the most persistent problems in liquid hydrogen (LH2) plants. The combination of heat exchanger and ortho-para (O–P) hydrogen conversion has attracted considerable attention as a cutting-edge technology to reduce energy consumption. The flow and heat transfer characteristics of O–P hydrogen conversion catalyst-filled spiral wound heat exchanger (SWHE) were investigated in this study in two steps. In the first step, pressure-drop experiments were performed in a tube filled with porous media. The results indicated that the pressure drop was overestimated when using Ergun's equation. Therefore, a new empirical pressure-drop correlation for a channel filled with O–P catalyst was formulated. Subsequently, a novel heat transfer model was established based on this correlation for further numerical simulations. The distributions of the temperature, pressure, and para hydrogen content in a catalyst-filled tube were determined. In addition, the influence of the flow rate on the heat exchange coefficient and outlet para hydrogen was clarified; it was found that, with an increase in the flow rate, the heat exchange coefficient increased, whereas the outlet para hydrogen content decreased. At a flow rate of 0.5 m3/h, the para hydrogen content increased by 44% after hydrogen flowed through the channel filled with the O–P catalyst. Furthermore, a prediction model for the para hydrogen content with a flow rate range of 0–1.5 m3/h was derived. This study provides promising theoretical evidence for the engineering application of SWHEs filled with O–P catalysts in large-scale hydrogen liquefaction units.  相似文献   
100.
Efficient electricity price forecasting plays a significant role in our society. In this paper, a novel influencer-defaulter mutation (IDM) mutation operator has been proposed. The IDM operator has been combined with six well-known optimization algorithms to create mutated optimization algorithms whose performance has been tested on twenty-four standard benchmark functions. Further, the artificial neural network is integrated with mutated optimization algorithms to solve the electricity price prediction problem. The policymakers can identify appropriate variables based on the predicted prices to help future market planning. The statistical results prove the efficacy of the IDM operator on the recent optimization algorithms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号